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Good day, executives and colleagues. As some of you may know, my name is Matthew Bowyer—your 

R&D analyst as well as a master’s student at the University of Essex Online. Today I am presenting a 

research project that provides a practical example of the developments we can make to our AI-

powered cameras. From our current generic “object ahead” system, I want to improve our camera 

logic, which will, in turn, improve safety and usability.  

 

Karooooo (Yes, we not only always spell it with 5 o’s but we have the rights to 6,7,8,9,10 and 11 o’s) 

Karooooo cameras excel at monitoring driver behaviour and proximity alerts (Cartrack, n.d.) but we 

can do more. Our cameras lack granular object awareness. If our current camera detects any object, 

it will help the driver avoid bumper bashes by letting the driver know verbally that an object is 

ahead. But what if the object is an animal, a pothole, or a truck? Then “object ahead” helps but the 

lack of description could cost the driver critical seconds trying to identify the threat rather than 

avoiding it. I am going to show that models can be trained to tell exactly what is ahead. By improving 

the detail given to the driver, if a dog is in the distance ahead, the driver should be notified by the 

camera, “Dog ahead” rather than “Object ahead”. 

 

To train this model, I used CIFAR-10 (Krizhevsky, 2009). Which includes 60 000 colour images across 

10 classes. As you can see, 3 random examples of images and their labels from the dataset. A frog, a 

truck and another truck. This dataset was chosen as it’s small enough for prototyping but complex as 

it contains 10 different classes the model needs to learn to differentiate between. This includes the 

examples I have shown as well as birds, dogs, ships and more.  

 

Getting into details, I cannot just give a model pictures and labels and hope it works. Some work 

needs to be done on the data. First, as you can see in the pie chart, I split the 60 000 images into 

training, testing and validation data. In a paper by Jeremy Jordan (Jordan, 2017) on evaluating 

machine learning models, he explained a typical random split is to use 60% of the data for training, 

20% for validation and 20% for testing. This means that the model sees the training data and trains 

on it, every lesson (Called epochs) the model goes through the test data, and the model then gets to 

see the validation data but has to tell what the labels are. Finally, after all epochs, the model gets 

tested on the test data. Giving the model too much training data can lead to overfitting which means 

the model is very good at its training data but not good at the test or validation data. Giving the 

model too little training data can lead to underfitting which means the model is not trained well 

enough to be good at predicting what the image label is. For my models, I chose a 75%, 8,3% and 

16,7% split. This was because of the large number of classes, I felt the model would need a bit more 

training data to make sure all classes were represented well. The downside is that the larger training 

data could cause overfitting and poor results after testing.  

 

To improve the model’s performance. I had to apply various techniques like normalisation, one-hot 

encoding and data augmentation. 



Normalisation – The pixel values of the images come in a range of 0 to 255. This gives the colour of 

the image. I normalise them between 0 and 1 to improve efficiency and readability for the model. 

(Jlassi & Dixon, 2024) The disadvantage to normalisation is that it takes extra computation to run 

through the dataset. The advantages are that normalisation does not change the fit of the pixels 

meaning the change won’t cause bias on the outcome of the model, as shown in the two graphs.   

One-hot encoding – This converts the table into binary (1 and 0) vectors. Which is easier for 

computers to read through. For example, if you had a gender column which identified each user as 

one of two genders, either Male or Female. One-hot encoding will remove the gender column and 

add a column for each unique category in gender, in this case two, then the user who identifies with 

Male will have 1 under the male column and 0 under the female column. The disadvantages are that 

this takes processing power before the model has even started training and only works on certain 

types of models. 

Data augmentation includes resizing images to potentially strengthen the learning rate by improving 

the variability in the images. This can also lessen the chances of overfitting as the dataset now has 

more variability. The disadvantage to using a single data augmentation method is that the real world 

has multiple factors including brightness changes and flipped objects, which are some of the 

additional data augmentation methods that could be included in model creation. Which can create 

models which have higher real-world accuracy.  

 

CNNs (Convolution Neural Networks) are one of the most widely used models today. They work by 

processing grid-like structures through one or more layers of neural networks, which break down the 

structure of the images for processing. (Geeksforgeeks, 2024). Digital images are grid-like structures 

and CNNs specialise in processing grid-like structures. (Mishra, 2020). The disadvantages include that 

the CNNs will not be able to tell where the object is exactly or what orientation the object is. 

(Geeksforgeeks, 2024). This is why, for this project, I did not choose classic machine learning or 

advanced machine learning. Deep learning using CNNs is a proven method for image recognition. 

 

I built 3 CNNs to compare performance, costs and overall usability at Karooooo. Model 1 is a simple 

model I made. Model 2 is a model with a base built by a Google-developed model called 

MobileNetV2. The third model is a popular powerful model called ResNet-50.  

Models 2 and 3 use a method called transfer learning. A method of using pre-built models for similar 

purposes as the base for the models for this project. This is common practice and is used to boost 

the results of the model. (Gupta et al, 2022). Think of it as model 1 learns only from the database we 

gave it, while model 2 and 3 start with a base that has already seen thousands to millions of 

everyday images. This way model 2 and 3 may already be able to differentiate between the images 

we now give in the dataset well from the start. 

All models use RGB images, a 32x32 input layer. This is how I input the data. The models use Adam 

optimiser and categorical cross entropy, ReLU in all hidden layers and a final dense layer activated by 

SoftMax, which are widely used hyperparameters to compile models (Sharma, 2017). 

Hyperparameters are the models’ settings. Models work by inputting data, processing it through the 

CNN layers and then outputting the image label that the model processed to most likely be true. 

Models are not just one big artificial brain. They are several specialists all doing their own job to 

achieve a specific goal. Some specialists, using data augmentation discussed earlier, they learn how 



to handle rotated, resized and brightened versions of the images to be able to recognize the images, 

even when conditions change. Other layers look for patterns and textures like fur, road markings or 

metal. Finally, the output experts come together and based on what they understand from the 

previous layers, they give an educated prediction on what they think it is. 

 

Choosing the same widely used compilers for all models is common practice as they are proven 

methods and make the models directly comparable. The perfect model cannot be built, but this 

method gives us a great base to work off of when we dive into testing the CNNs on Karooooo data. 

We can then attempt other compiler layouts, hyperparameters and bases. The downside is the 

models have similar features, meaning I am not exploring all possible model designs. However, it 

would not be possible to test every type of model variation. It is possible to test many of them and 

refine models, I will dive into this later when we discuss the roadmap for this project. 

The models differ in the number of epochs. Model 1 has 30, model 2 has 25 and model 3 has 20. 

Respectively, the models have 800 000, 2,3 million and 23 million trainable parameters. These are 

the weights and biases the model changes throughout learning. These parameter figures come from 

the different layers I chose in each model. All models had convolution layers, which detect patterns 

and textures. All models also had Dense layers at the end which is the layer that makes the final 

decision. Model 2 and 3 had pre trained layers, I added a dropout layer which prevent overfitting by 

“Shutting down” a certain percentage of the neurons during training. As models grow in depth and 

complexity, so do the parameters. Model 1 uses a batch size of 128, model 2 uses a batch size of 96 

and model 3 uses a batch size of 64. Batch size is the number of images processed at a time. I lessen 

batches as the models become more complex, this way each epoch uses less memory in the bigger 

models. Models 1 and 2 use a learning rate of 0,001 and model 3 uses a learning rate of 0,0005. 

Learning rate controls updates to the model throughout each batch. The higher the learning rate the 

bigger jumps the model will make. Since model 3 has a smaller batch size, I made the learning rate 

smaller to avoid instability and large updates throughout training.  

In summary, model 1 is the smallest, simplest and quickest model to train. Model 2 is significantly 

bigger, with transfer learning and takes a longer time to train. Model 3 is the biggest, also with 

transfer learning and takes the longest time to train. On paper, each level of the model should 

provide better results than the lower level of the model. 

 

Time for the big reveal. Which model did best? What sort of accuracy can we get the test data to? 

Let’s start with the big one: accuracy, the percentage of total correct predictions made by each 

model. Rounded up, Model 1 had 69% accuracy, Model 2 had 81% accuracy and Model 3 had 32% 

accuracy. Model 2 and 3 used transfer learning, which as discussed means before they were trained 

on our dataset, the models saw millions of images and trained on them. Model 3’s low accuracy 

compared to model 2 could be due to model 2 having been trained on images similar to our dataset. 

I do not see any obvious signs of overfitting as model 3 does badly on the training data as well as the 

test data. My assumption is the images model 3 has been trained on must not compliment our 

dataset. 

We see similar percentages for Precision, recall and F1-score. Which all just help make sure the 

model is not just a random label generator. Precision shows how often the model is right when it says 

“yes”, Recall shows how well the model catches all true cases and F1-score the harmonic mean of 

precision and recall. 



MCC (Matthews Correlation Coefficient), is a single metric that considers all 4 categories of a 

confusion matrix. A confusion matrix is used to show each class, how many times it was correctly 

predicted and how many times other classes were wrongly predicted. We can see the confusion 

matrix for model 2, the best-performing model. The most accurate class is the truck with 913 true-

positive predictions, positively ironic. The worst performing class is the cat, due to the cat and dog 

getting mixed up. With a dog being selected 141 times when the image was a cat. This is where we 

can decide to merge animals into one category to avoid false positives. 

Using MCC we can see between -1 and +1 if the model is guessing (a score of zero) or if the model is 

perfect at predictions (1) or perfect at predicting the wrong answer (-1). The MCC for the models 

were 0.66, 0.78 and 0.25. Model 3 is almost as close to being categorized as a random guessing 

model as model 2 is to being categorized as a perfect predictor.  

Diving deeper into model 2. We can look at the Validation and training accuracy and loss over the 

epochs. We can see the accuracy at the 1st epoch already started at roughly 75% accuracy for the 

training data and 79% for the validation data. This signifies that the training data is well rounded as 

the model does well on the validation data too. This also emphasizes that the method of transfer 

learning shows model 2’s training before I used it compliments our dataset very well. Looking at the 

right graph. Loss shows how different the guess is from the actual image label. We can see that loss is 

decreasing as the difference to the actual image gets smaller. This means the training went very well. 

The graphs seem to be close to their peak of around 82%, signifying that more epochs would not 

improve accuracy. Some changes will need to be made to the compilers if we want a better model. 

Model 2’s 81% accuracy and near-perfect MCC score outshine models 1 and 3. This was a practical 

example. Imagine what we could do with the green light on this project. The accuracy we could work 

up to, the inference time we could lower and the lives we could save. 

 

The practical example is a success. The next step is to integrate the model with Karooooo’s data. Fix 

issues like merging all types of animals into one class to avoid the cat-dog false positive issue. 

Merging class automobiles and class trucks for the same reason. We also need to make sure that we 

have images of rare hazards such as cars with no lights on or animals on the road at night. These 

outlier hazards are important to not overfit the models with common data. Increased data 

augmentation will also help in this situation. Further operational considerations include avoiding too 

many alerts or false alerts, so as not to overwhelm the driver. We can achieve this by only providing a 

warning if the model is 95% or more certain of what it has detected. Development into these key 

factors can skyrocket the accuracy and rollout Karooooo’s new AI camera safety features. 

 

With datasets being built internally, models being trained on our own and backed on our servers. 

Costs can be kept to a minimum as we will be producing and training the models in-house. Model 2 

with 81% test accuracy is lightweight in terms of power usage and a great start to this project. 

By enabling object-specific alerts, the advanced system can reduce rear-end, animal and pothole 

collisions, and doing so with minimal additional power drawn by the cameras. This is a step into the 

future of safety. 

 

Thank you 
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